Search results for "Electrical analog"
showing 4 items of 4 documents
TORSIONAL STRESS CONCENTRATIONS IN SHAFTS: FROM ELECTRICAL ANALOGIES TO NUMERICAL METHODS
2013
This paper presents the historical development of methods used for the study of torsional stresses in shafts. In particular the paper covers both analog methods, in particular those based on electrical analogies proposed since about 1925, and numerical methods, in particular finite difference methods (FDM), finite element methods (FEM) and boundary elements (BEM).
Viscoelasticity: an electrical point of view
2014
Time dependent hereditary properties of complex materials are well described by power-laws with real order exponent. This experimental observation and analogous electrical experiments, yield a description of these properties by using fractional-order operators. In this paper, elasto-viscous and visco-elastic behaviors of fractional order hereditary materials are firstly described by using fractional mathematical operators, based on recent work of some of the authors. Then, electrical analogous models are introduced. Viscoelastic models have elastic and viscous components which can be obtained by combining springs and dashpots: these models can be equivalently viewed as electrical circuits, …
Determination of Torsional Stresses in Shafts: From Physical Analogies to Mathematical Models
2015
This paper presents the historical development of methods used for the study of torsional stresses in shafts. In particular, the paper covers both analog methods, especially those based on electrical analogies proposed circa 1925, and numerical methods, especially finite difference methods (FDM), finite element methods (FEM) and boundary element methods (BEM).
On the history of torsional stress concentrations in shafts: From electrical analogies to numerical methods
2014
This article proposes a retrospective on experimental and numerical methods developed throughout the past century to solve the torsion problem in shafts, with particular emphasis on the determination of shear stress concentration factors in discontinuities of typical use in shaft design. This article, in particular, presents the theory and related solutions distinguishing between two classes of geometries: shafts with constant cross section and axisymmetric shafts with variable diameter. Emphasis is given to approaches based on physical analog methods and, in particular, those based on electrical analogies proposed since about 1925. Experimental methods based on structural physical models …